Dr. Candace Walkington, math education professor at Southern Methodist University, teaches a course on STEM integration for pre-service elementary teachers. As part of the class, her students author a series of blogs where they discuss issues related to the integration of science, technology, engineering, and mathematics in elementary school. In this set of blogs, her students were discussing how they can use educational “apps” that are related to STEM in their classroom, focusing particularly on math. They were encouraged to take a critical stance towards the use of apps and to give clear guidelines for how teachers can find and evaluate high-quality apps for math learning.
How much time did you spend watching TV when you were in elementary school? When did you first get a cell-phone? My personal technology milestones were a laptop in eighth grade, a cellphone as a high school freshman, a smartphone as a college first-year, an e-reader as a college sophomore, and a tablet as a college junior. The following chart shows that in 2009, the average age for receiving a personal mobile phone was 9.7. That’s fourth or fifth grade!
Technology is becoming increasingly prevalent in today’s society. As Collins & Halverson (2009) point out in their book Rethinking Education in the Age of Technology, “the world is changing and we will need to adapt schooling to prepare students for the changing world they are entering” (p. 9). The following graph shows the time spent per week on certain media and devices by age, including video games, computers, tablets, e-readers, mobile phones, and more.
You can see that in 2010, at least one-fifth of children ages four to five are using media for 5-9 hours per week. Using the waking hours per day as the maximum of 12 (Pantley, 2009) for a total of 84 waking hours in a week, 9 hours of media is 10% of waking hours. That’s a large chunk of time in front of screen. As I mentioned in my earlier blog post about the use of technology in education, I am highly in favor of its proper integration. Collins & Halverson (2009) also point out that “technology gives us enhanced capabilities for educating learners” (p. 9). One of the best examples of this enhanced capability incorporated into an educational setting is mobile applications, or apps. A research study funded by Nickelodeon found that gaming is the primary use of electronic devices, where “96% of kids say they use their computer for gaming, compared to 88% on the tablet and 86% on the smartphone” (2013).
Educational apps combine the natural inclination of children to enjoy games with the new technology and media that has become ubiquitous to our daily lives. In our course on Integrated STEM Studies through the education department, we had the chance to test several STEM apps, specifically focusing on math apps. Here are some of my favorites from class and from my own personal exploration:
Pizza! by Motion Math
This app combines a favorite childhood food with business decision-making to teach children important math skills. For example, they learn division by calculating the unit price for ingredients to make sure they’re getting the best deal. Multiplication and addition are used to find the total bill of a customer’s order, and rapid computation is necessary to keep customers satisfied and sales high. In later rounds, pricing decisions require number comparison – is the cost of producing pizzas offset by the money customers will pay? How much is too much to charge for the oft-requested “Sardine Special?” Finally, students must keep track of ingredient inventory to maximize sales and avoid the angry speech bubbles, “You ran out of pineapple!” From my criteria for what makes a good app this app pretty much fulfills them all.
Hungry Fish by Motion Math
In this game, children feed number bubbles to an insatiable fish. The easiest level is simply number recognition and matching – if the fish says “1” then the correct bubble is that which also says “1.” In higher levels, bubbles must be combined, adding or subtracting them to create the appropriate feeding value. This game is simpler in concept than Pizza! but still highly engaging, at least in my personal experience. I had the opportunity to observe a group of second-grade students play this app together in my field experience.
Overall, using educational apps can help make learning fun and provide good individual or small-group reinforcement activities. However, since most are formatted as games, the STEM skills and knowledge must be central to success in the game or it is just a game with numbers. I saw Hungry Fish being used in a second grade classroom without teacher supervision, and the student in charge of combining bubbles was simply dragging adjacent bubbles together without trying to reach the correct number to feed the fish. It is important to remember with education apps that education needs to be the focus, not the app. In addition, as whenever technology is used, there are concerns about sharing and taking turns, theft or other damage, and if the technology is functional when it’s needed.
Educationally, apps need to be standards-based, STEM focused (for this blog), and challenging but not frustrating.
Standards-based apps are preferable, since they pull their goal concepts and skills from an already created and approved list. For example, Hungry Fish, the bubble-eating game I mentioned earlier, includes a list of the Common Core Standards addressed in the game on the company’s website.
Without a basis in standards, apps may help students practice math or other STEM skills, but fall short of helping them stay on track with the actual curriculum. The curriculum and standards are developed to provide a framework of logically sequenced knowledge and skills acquisition, and following them creates a uniform education system across the state (and the nation).
STEM focused apps use STEM concepts and processes as part of the core mechanics of app, not a side benefit. For example, in Pizza! , math knowledge and skills are necessary for success. In contrast, Hungry Fish could simply be an amusing way to combine bubbles and see numbers change.
Finally, apps need to be educationally challenging, but not frustrating. Vygotsky’s Zone of Proximal Development posits that students learn best when they are working in the area where they need guidance but can still accomplish a task. This is illustrated as the middle circle in the diagram.
Even though you use your own criteria to evaluate apps yourself, some of the work has already been done for you. My favorite place to look for app suggestions is on websites that focus on reviewing media and apps. Here’s a list of a couple that focus specifically on apps for children, and some that even focus in on educational apps for children as reviewed by parents and teachers.
- Children’s Technology Review's goal is “to provide objective reviews of children’s interactive media products,” and there are many apps reviewed. However, the search feature not as polished as some of the other sites.
- Appysmarts finds the “best apps for young brains.” You may need to create an account to access some features of this site.
- Common Sense Media: “We rate, educate, and advocate for kids, families, and schools.”
- Graphite is “a platform we created to make it easier for educators to find the best apps, games, and websites for the classroom” (by Common Sense Media).